DEMO version of Maths admission test

The Maths examination consists of two parts: A and B.

Part A includes 7 tasks, which require choosing a correct answer from several variants. Each correct answer is worth 10 point. The candidate can get total of 70 points for this part.

Part B includes 3 tasks which require to fill in the answer. The candidate can get total of 30 points for this part.

The maximum number of points for parts A and B - 100.

The minimum number of points needed to pass the exam successfully -39.

The candidate has 60 minutes to complete all the tasks.

Part A	A.
--------	----

1.	Solve the equation:	$(1)^k \pi$
	1	$x = (-1)^n \cdot \frac{\pi}{3} + \pi k, \ k \in \mathbb{Z}$
	$\cos x = \frac{1}{2}$	π
	2	$\begin{array}{c} x = \pm - + \pi k, \ k \in \mathbb{Z} \\ b \end{array}$
		$x = \pm \frac{\pi}{2} \pm 2\pi k$ $k \in \mathbb{Z}$
		c) 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		$x = \pm \frac{\pi}{2}$
		d) 6
		2
2.	Find the derivative of function:	a) $y' = 16x^3 - \cos x - 2e^x$
	$y = 4x^4 + \cos x - 2e^x + 5$	b) $y' = 16x^3 - \sin x - 2e^x$
		c) $y' = 4x^3 - \sin x - 2$
		d) $y' = 4x^3 - \cos x - xe^x + 5x$
3.	$(1)^{-2x+6}$	a) (-∞;4]
	$\left \frac{1}{6}\right < 36$	b) ^{[4;+∞)}
	Solve: (0)	c) $(-\infty; 4)$
		d) $^{(4;+\infty)}$
4.	A deck consists of 36 cards. Randomly we	a) 2/9
	draw one card. What is the probability that this	b) 1/6
	card is a "king"?	c) 1/4
		d) 1/9
5.	Solve: $2\cos x = \sqrt{3}$	$\pm \frac{\pi}{n} + \pi n, n \in \mathbb{Z}$
		a) 3
		$\pm \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$
		b) 3

		c) $\frac{(-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}}{\pi}$
		$ \begin{array}{c} \pm \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z} \\ \mathbf{d} \end{array} $
6.	Find the maximum value of the function	1
	$\sqrt{2}(\cos x - \sin x)$	a) 4
		b) 2
		$\sqrt{2}$
		$c)$ $\overline{2}$
		d) 1
7.	$\log_2(x-1) = 3$	a) 9
	Solve the equation:	b) 3
		c) 0
		d) 4

Part B.

Write the correct answer:

8. Find the area of the rectangular trapezoid, the bases of which are 16 and 22, the large side makes an angle of 45° with the base.

$$\lim_{x \to \infty} \frac{\log_2(x+5)}{2^{x+2} - 4^x - 3} \le \log_2(x+5)$$

9. Solve the inequality:

10. Find all the values of the parameter "a", for each of which the equation $\sqrt{3^{2x} - 5a} = 3^x - a$ has a single root.